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Introduction
Motivation

▶ Two DAGs D,D′ that share the same set of d-separation statements of the form
A ⊥ B | ∅ are called unconditionally equivalent.

▶ Corresponding unconditional equivalence classes (UECs) of DAGs:
• are easily estimated from data (e.g., nonzero entries of a covariance matrix),
• are represented by simple undirected graphs,
• but still contain a surprising amount of causal information.

▶ Hence, understanding UECs can help with:
• (partial) causal discovery for otherwise prohibitively large structures
• and speeding up existing causal discovery methods (e.g., GES).

▶ Previous work1 focused on enumerating DAGs faithful to a given UEC.

▶ In contrast, we give novel characterizations and properties that facilitate exploring
the space of UECs.

1J. Textor, A. Idelberger, and M. Lískiewicz. “Learning from pairwise marginal independencies”. In:
31st Conference on Uncertainty in Artificial Intelligence (UAI 2015) (2015). arXiv:1508.00280 [cs.AI]

3 / 12



Introduction
DAGs, MECs, and UECs example
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Introduction
Unconditional dependence graphs (UDGs)

The unconditional dependence graph (UDG) of a DAG D = (V ,E ) is the undirected
graph U = (V , {{v ,w} : v ̸⊥D w ; v ,w ∈ V }).

1 2

3 4

(a) DAG D with d-separations
I = {1 ⊥ 2 | ∅, 2 ⊥ 4 | {1, 3}}
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(b) DAG D′ with d-separations
I = {1 ⊥ 2 | ∅, 3 ⊥ 4 | {1, 2}}
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(c) UDG representing
I = {1 ⊥ 2}

Figure: Unconditionally equivalent DAGs D,D′ with common unconditional d-separation
statement 1 ⊥ 2 and corresponding UDG missing edge {1, 2}
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Transformational characterization for DAGs
Main result and example

Theorem (Transformational Characterization)
Let D and D′ be two unconditionally equivalent DAGs. There
exists a sequence of |ED′ \ ED | edge insertions, followed by
|∆(RD,D′

,RD′,D)| edge reversals, followed by |ED \ ED′ |
edge deletions that transforms D into D′ with the following
properties:
1. Each edge inserted or deleted in D is partially weakly

covered or implied by transitivity.

2. Each edge reversed in D is weakly covered.

3. After each operation, the resulting D is a DAG and
UD = UD′

.

4. After all operations, D = D′.
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Transforming essential graphs (CPDAGs)
Theorem sketch and example

Theorem (11)
The edge v −−◦w of an essential graph G is
removable if and only if
mtG−v −−◦ w (v) ⊆ mtG−v −−◦ w (w).

Theorem (13)
Given an essential graph G and removable edge
v −−◦w , define T := neG(v) ∩ neGcc(w)

(w). Based on
|T | and whether v → w or v −− w , we can
determine if the PDAG G−v −−◦w is complete and can
enumerate all unconditionally equivalent completions
otherwise.
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Conclusion and future work

Conclusion: We derive novel characterizations of unconditional equivalence classes
(UECs), resulting in a new, more efficient way of moving around the space of DAGs.

Future work:
▶ Markov Chain Monte Carlo (MCMC) methods for learning UECs2

• learn BIC-optimal UEC, MAP estimate, and full posterior π(U | Data)
▶ GES algorithms (including extension to MAGs)

• first, take “big” steps between UECs in an uphill/forward phase
• then, take “small” steps between CPDAGs (or PAGs) within the vastly reduced space
of a single UEC in a downhill/backward phase

▶ generalizing to small instead of empty conditioning sets
• more causal info than UECs; less computationally expensive than arbitrary
conditioning sets

2D. Deligeorgaki, A. Markham, P. Misra, and L. Solus. “Combinatorial and algebraic perspectives on
the marginal independence structure of Bayesian networks”. In: (2022). arXiv:2210.00822 [stat.ME]
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