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Main Idea

▶ Undirected graphs (usually) offer less powerful/detailed
representations of causal structure than DAGs or mixed
graphs...

▶ But they are much easier to work with...

▶ ...so use undirected graphs first to make the problem easier,
then go back to DAGs or mixed graphs
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Undirected Graphs for Latent-induced Dependence

▶ Undirected graphs (usually) offer less powerful/detailed
representations of causal structure than DAGs or mixed
graphs...

▶ Question: when are undirected representations not less
powerful/detailed?

▶ One answer: when considering latent-induced dependence.
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Undirected Graphs for Latent-induced Dependence

▶ The familiar Causal Markov Assumption implies causal
sufficiency,i.e., every probabilistic dependence between two
observed variables is due to either (i) one of them (indirectly)
causing the other, or (ii) both of them having a common
cause among the observed variables.

▶ This assumption can be relaxed, allowing the common cause
to be unobserved or latent.

▶ We consider a strengthening of this relaxed assumption,
namely, what if all dependence between the observed variables
is because of common latent causes?
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Undirected Graphs for Latent-induced Dependence

In this setting, called strong causal insufficiency, it turns out that:

▶ an undirected graph can completely describe the causal
structure/conditional independence relations among the
observed variables

▶ furthermore, the undirected graph (via a minimal edge clique
cover) facilitates learning an explicit DAG representation of
the minimal latent causal model capable of generating the
observed data.

Intuition: allows for a causally-interpretable factor analysis

A. Markham and M. Grosse-Wentrup (2020). “Measurement Dependence
Inducing Latent Causal Models”. In: Proceedings of the 36th Conference on
Uncertainty in Artificial Intelligence (UAI). PMLR
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Undirected Graphs for Causal Kernel Embeddings

▶ Question: How to tell if samples generated by different
underlying causal structures?

▶ One solution: Project samples into a causally-interpretable
space and measure distance/similarity between the points
there

▶ ...then how do we construct a feature map to such a space?

▶ ...and how do we measure distance there?
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Undirected Graphs for Causal Kernel Embeddings

Definition (Dependence Contribution Map, φ(·))
Let S ∈ Rn,m be a set of n samples from the vector of m random
variables. Let D ∈ Rn,n,m denote the 3-dimensional array of
stacked pairwise distance matrices. Let C ∈ Rn,n,m to denote these
same distance matrices after being doubly-centered. Now

standardize the doubly-centered distances to get Zi ,i ′,j :=
Ci,i′,j
D̄·,·,j

.

Finally, the dependence contribution map, φ : Rm → Rm,m, is
defined as

φ(Si ,·) := Z⊤
i ,·,·Zi ,·,· − T (α).

▶ Same result as pairwise nonlinear (unconditional)
independence tests using distance covariance with significance
level α.
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Undirected Graphs for Causal Kernel Embeddings

Definition (Dependence Contribution Kernel, κ(·, ·))
Let S ,Z , T , and φ be as in Definition 1. We define the dependence
contribution kernel using the Frobenius (denoted by the subscript

F) inner product and norm: κ(Si ,·, Si ′,·) =
⟨φ(Si,·), φ(Si′,·)⟩F

∥φ(Si,·)∥F
∥φ(Si′,·)∥F

.

▶ Using kernel trick, we can directly calculate similarity (and its
inverse, distance) between samples without having to
explicitly (and computationally expensively) project them
using the feature map.
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Undirected Graphs for Causal Kernel Embeddings

Theorem
Let S ∈ Rn,m, S ′ ∈ Rn′,m be sets of n, n′ iid samples drawn
respectively from the random variables X = (X1, . . . ,Xm) and
X ′ = (X ′

1, . . . ,X
′
m) with finite first moments. Then,

n∑
i=1

n′∑
i ′=1

κ(Si ,·, S
′
i ′,·) < 0

=⇒ ∃j , j ′ ∈ {1, . . . ,m} such that I(Xj ,Xj ′ ; ∅) ̸= I(X ′
j ,X

′
j ′ ; ∅)

i.e., X and X ′ have different unconditional independence relations
and therefore different causal structures.
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Undirected Graphs for Causal Kernel Embeddings

▶ In other words, the dependence contribution kernel κ gives us
a statistically consistent estimator of when two sets of
samples come from different causal structures (up to
unconditional equivalence).

▶ Even stronger (and more specifically), we establish an
isometry between distance in the kernel space (quotiented into
orthants) and distance in the space of causal ancestral graphs
(quotiented into undirected graphs)

A. Markham, R. Das, and M. Grosse-Wentrup (2022). “A Distance
Covariance-based Kernel for Nonlinear Causal Clustering in Heterogeneous
Populations”. In: Proceedings of the 1st Conference on Causal Learning and
Reasoning (CLeaR). PMLR
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Undirected Graphs for Greedy Equivalence Search

“Optimal Structure Identification with Greedy Search” (Chickering,
2002) introduced the GES algorithm:

▶ start with empty graph

▶ greedily add edges, thus moving between Markov equivalence
classes (MECs) represented by essential graphs

▶ when no edge additions improve score, greedily remove edges
till arriving at optimal structure

One key insight is to partition DAG space into smaller MEC space,
and perform search there; another is the transformational
characterization of the MEC.
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Undirected Graphs for Greedy Equivalence Search

Definition
The unconditional dependence graph (UDG) of a DAG G = (V ,E )
is the undirected graph UG = (V , {{v ,w} : v ̸⊥G w}).

▶ Like essential graphs, these form an equivalence class over
DAGs (indeed, as shown in the kernel paper, over ancestral
graphs), called the unconditional equivalence class (UEC).

▶ The UEC also admits a transformational characterization.

▶ It is a partition coarsening of MEC space.

▶ The UEC can be estimated efficiently from data using, e.g.,
covariance matrix.
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Undirected Graphs for Greedy Equivalence Search

This all leads to the Greedy Unconditional Equivalence Search
(GUES) algorithm:

▶ start with unconditional independence tests to estimate U
▶ initialize a maximal essential graph in the UEC defined by U
▶ greedily move (by removing or reversing specific edges)

between the essential graphs (MECs) within the UEC till
arriving at optimal structure

A. Markham, D. Deligeorgaki, P. Misra, and L. Solus (2022). “Causal
Structure Learning with Greedy Unconditional Equivalence Search”. In:
Preprint. on arXiv soon!
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Thanks!

Questions?

alex.markham@causal.dev
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