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Abstract

The aim of this master’s thesis is to provide a framework for the learning of a category
of Functional Causal Models called MeDIL models. These models allow reasoning of the
latent variable structure of a dataset by exploiting dependencies among variables in the data.
Specifically, minimal MeDIL models are considered. The approach makes use of generative
modelling methods using neural networks. The proposed architecture and learning objective
for the generative model is called the MMDnet. The design choices and assumptions are
compared with the requirements of learning the latent causal models. The novelty of the
approach in put in perspective of pre-existing approaches that solve similar tasks. Finally,
the framework is tested on multiple artificial datasets. The specifics of training an MMDNet
is reported along with performance of the models is reported by the ability to accurately
recover the true distribution of the observed variables.
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Chapter 1

Introduction

Several questions that we seek to answer through data analysis are essentially questions of
causality. In such cases, standard statistical approaches do not suffice. This is illustrated
by the straightforward example of Simpson’s Paradox [Pearl, 2000]. Several fields also re-
quire causal reasoning, such as economics, epidemiology, neuroscience and psychology. It is
therefore often advantageous, or even necessary, to understand the causal structure and mech-
anisms that generate the data that we collect and analyse. To this end, there are multiple
frameworks for formalising notions of causality. Some of these include Granger causality for
time-series data [Granger, 1969] and the Rubin causal model and potential outcomes frame-
work for the design and analysis of randomised controlled trials [Holland, 1986]. A framework
that is showing increased use is the Pearl causal framework [Pearl and Verma, 1991]. It pro-
vides a graphical representation of variables and their corresponding probability distributions
using Directed Acyclic Graphs (DAGs).

In [Markham and Grosse-Wentrup, 2019], the authors argue that it is not unreasonable
to assume that, in certain application domains, none of the variables are directly causally
related, but are instead related exclusively through the presence of latent variables. They
further introduce a novel algorithm to identify latent causal structures that are observationally
consistent with the dataset. The main focus of this thesis is to be able learn the Functional
Causal Model (FCM) for the minimal Measurement Dependence Inducing Latent Causal
Model (minMCM).

1.1 Related Work

Understanding the latent variables involved in the generative process allows for more pow-
erful data analysis. Non-Linear Independent Component Analysis is one of the primary ap-
proaches in this regard [Hoyer et al., 2009]. Variational Inference is a Bayesian approach
to model latent variables of a data distribution. Specifically, Variational Autoencoders
[Kingma and Welling, 2014] have been used to model complex high-dimensional distributions
using lower-dimensional latent representations. Modifications to the training objective can
enable more robust latent representations for the generative models by encouraging inde-
pendence and representational properties of the latent variables[Burgess et al., 2018]. Causal
Disentanglement is another class of methods that seek to model and represent a distribution
using factors of variation in the generative process [Mathieu et al., 2016]. A combination
of the two approaches is shown to be equivalent under certain conditions and capable of
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representing Functional Causal Models [Khemakhem et al., 2020].
These methods provide varying levels of flexibility with regard to nature of the possible

causal mechanism that can be modelled. They rely on restrictive assumptions, such as al-
lowing only linear relations or having the noise terms be exclusively non-Gaussian. But more
crucially, all of the methods enforce that all of the latent variables be causes for all of the
observed variables. This violates the measurement faithfulness property of the minMCM.

The approach presented in this thesis allows the learning of a latent variable generative
model that does not require full connectedness between latent and observed variables and
additionally allows the functional relations to be non-linear. Roughly speaking, a generative
model is trained with a similar objective as outlined in [Li et al., 2015]. These models however
do not strictly correspond to a Functional Causal Model. The setup of the generative model
so as to constitute a valid FCM is similar to the setup in [Goudet et al., 2017].

The remainder of this thesis is structured as follows. In Chapter 2, some fundamentals of
causality and graph terminology as introduced. Further the definition, properties and iden-
tification of minMCM are elaborated upon. Chapter 3 presents background on generative
modelling approaches. Chapter 4 contains the framework proposed to learn functional rela-
tions in minMCMs and experiments conducted on synthetic datasets to validate the approach.
Chapter 5 concludes the work with discussion points regarding the learnability and scalability
of the proposed method.



Chapter 2

Causality Background

In this section, we introduce basic graph terminology in the context of Functional Causal
Models and define the MeDIL model and minimal MCM. Furthermore, an overview of the
algorithm to identify the minMCM is provided and the properties of the minMCM are de-
scribed.

2.1 Graph Terminology

A Graph G is defined as a tuple G = 〈V,E〉, where V is the set of vertices and E is the set
of edges represented as an ordered tuple (vi, vj), i 6= j connecting any two vertices in V , and
is visually simply represented with a line. An edge is called undirected if for any given edge
(vi, vj) ∈ E, the edge (vj , vi) is also in E. Similarly, an edge (vi, vj) from vi to vj in E, also
represented as vi → vj , is called directed if (vj , vi) is not in E. A graph G is called directed
if all the edges in E are directed edges.

A path in a graph is a sequence of edges such that the start node of an edge in this
sequence is the same as the end node of the previous edge. A path is called directed if all
the edges in the path are directed edges. A cycle is a directed path in a graph that starts
and ends on the same vertex. A graph G is called acyclic if there are no cycles in the graph.
The parents of a vertex v in V, written as, pa(v), are the set of vertices k, such that there
exists a directed edge (k, v) in E. A vertex k is called an ancestor of vertex v if there exists
a directed path from k to v. Similarly, v is called a descendant of k.

2.2 Causal Models

Definition 1 (Causal Model). A causal model of a set of variables V is a DAG, in which
each node corresponds to a distinct element in V and the set of edges E correspond to causal
influences of elements in V on other elements in V . [Pearl and Verma, 1991]

Definition 2 (Functional Causal Model). A functional causal model is a tripleM = 〈V,F, ε〉,
where

• V is the set of (endogenous) random variables,

• F is a set of functions defining each endogenous variable Vi as a function of its direct
causes (i.e., parents or pa(Vi)) and its corresponding exogenous random variable εi, so
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that for each Vi ∈ V, we have Vi := fi(pa(Vi), εi). Furthermore, F is constrained such
that no Vi is a direct cause of itself or any of its causes, removing the possibility of
causal cycles.

• ε defines a joint probability distribution over the exogenous (or noise) variables, with a
corresponding εi ∈ ε for each Vi ∈ V, and with εi being independent from εj for each
εi, εj ∈ ε

The endogenous random variables induce a probability distribution P over the variables
V. A probability distribution P and DAG G is called Markov compatible if the probability dis-
tribution P , admits the factorisation P (V) =

∏n
i=0 P (xi|pa(xi)),∀xi ∈ V [Pearl et al., 2016]

The set of distributions, P , that are Markov compatible with a given DAG G can be
characterised by the set of (conditional) independencies satisfied by the distribution. This
set of (conditional) independencies can be extracted from the DAG G using the d-separation
criterion. A path p is said to be d-separated by a set of nodes Z if and only if, p contains, (1)
a chain i→ m→ j or a fork i← m→ j with i, j,m ∈ V such that i, j /∈ Z and m ∈ Z or (2)
p contains a collider: i→ m← j with m /∈ Z and all descendants of m /∈ Z.

The causal Markov condition states that, conditioned on the parents of a variable X ∈ V,
i.e. pa(X) ∈ V the variable X is independent of all other variables in V except for its
effects. This implies that variables that are d-separated in G are (conditionally) independent.
The causal faithfulness condition states that if any two variables in V are (conditionally)
independent, they are d-separated in G. Together the causal Markov condition and the causal
faithfulness condition imply that X causes Y if and only if X and Y are dependent conditioned
on the set of all direct causes of X, i.e. pa(X)[Hausman and Woodward, 1999].

Finally, one of the conditions that is assumed for some of the traditional causal modelling
approaches is sufficiency. The causal sufficiency condition states the all variables relevant to
the model are observed and that there are no unobserved common causes between variables
in V that introduce spurious dependencies in P . The MeDIL model deals in the regime where
this assumption is violated.

2.2.1 MeDIL Causal Model

The Measurement Dependence Inducing Latent Causal Model is causal model where all the
observed variables are treated as measurement variables that are caused exclusively by latent
variables. This condition is referred to as strong insufficiency. All dependencies that exist in
the data are through a common latent cause rather than a direct causal relation between the
variables. A MeDIL model is defined as follows,

Definition 3 (Measurement Dependence Inducing Latent Causal Model (MCM)). A graph-
ical MCM is a DAG, given by the triple G = 〈L,M,E〉. L and M are disjoint sets of vertices,
while E is a set of directed edges between these sets of vertices, subject to the following
constraints:

1. all vertices in M have in-degree of at least 1 and out-degree of 0

2. all vertices in L have out-degree of at least 1

3. E contains no cycles
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Further, it is shown that several MeDIL causal models may be observationally consistent
with a given dataset. To this end, the notion of minimality is introduced. A MCM is
minimal if it is the least expressive MCM that induces identical dependence relations in the
measurement variables, and is called a minMCM (minimal MCM). The minMCM can be
identified by finding the Edge Clique Covering (ECC) of the undirected dependency graph of
the measurement variables. An undirected dependency graph (UDG) is an undirected graph
of a set of variables V such that there exists an undirected edge (vi, vj) in E, if an only if
vi and vj are probabilistically dependent. The test for independence between each pair of
measurement variables is done using the distance correlation test.

Distance Correlation

Given two random variables X and Y , the distance correlation (dCor) R(X,Y ) evaluates to
zero, if and only if X and Y are independent. [Székely et al., 2007]. The distance correlation
is defined as,

R2(X,Y) =
V2(X,Y)

V2(X,X) V2(Y,Y)
(2.1)

The estimator for distance correlation test requires the computation of distance covari-
ance(dCov) and distance variance (dVar). The sample distance covariance is computed using
centered Euclidean distance matrices. Given the samples X and Y, each of size n, we compute
the pairwise euclidean matrices,

ai,j = ‖Xi −Xj‖ bi,j = ‖Yi − Yj‖

We then calculate the following centered distances,

Ai,j = ai,j −
1

n

n∑
l=1

ai,l −
1

n

n∑
k=1

ak,j +
1

n2

n∑
k=1

n∑
l=1

ak,l

Bi,j = bi,j −
1

n

n∑
l=1

bi,l −
1

n

n∑
k=1

bk,j +
1

n2

n∑
k=1

n∑
l=1

bk,l

The (biased) sample distance covariance is now defined as,

V2n(X,Y) =
1

n2

n∑
i=0

n∑
j=0

Ai,jBi,j

This can now be used to estimate the sample distance correlation value,

R2
n(X,Y) =

V2n(X,Y)

V2n(X,X) V2n(Y,Y)
(2.2)
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Chapter 3

Generative Modelling Background

In this section, some of the definitions and approaches to generative modelling are introduced.
Primarily, the use of Deep Generative methods is motivated as a flexible framework for
learning complex generative models. As FCMs represent the generative process of data,
generative modelling approaches naturally yield themselves for the learning of such models.

3.1 Definitions and Notation

We define a dataset with X = {x(i)}, i ∈ {1, . . . , n}, where x(i) ∈ Rd, n is the number of
samples and d the number of dimensions. Let p(x;θ) be a data generating distribution with
parameters θ. We assume that X is an i.i.d sample drawn from p(x;θ∗), which is called the
true data generating distribution, with θ∗ referred to as the true parameter set.

In Bayesian and Generative modelling settings, inference is framed as estimating the joint
distribution p(z,x) over latent variables z and observed variables x, the latent variables govern
the data distribution. The joint distribution can be written as, p(z,x) = p(z) p(x|z), where
p(z) is the density over latent variables and is called the prior. In a generative model, we
draw a sample from the prior and relate it to observations using the conditional distribution
p(x|z), called the likelihood. For Bayesian models, performing inference is essentially esti-
mating the posterior distribution, i.e. p(z|x). In the case of complex models, this is done via
approximate inference. Examples of approximate inference methods include Markov Chain
Monte Carlo [Hastings, 1970], which is a sampling based approach, and Variational Inference
[Blei et al., 2018], which is an optimisation based approach. When this is cast this as an
optimisation problem, it is possible to utilise Deep Learning methods to find near-optimal
solutions.

3.2 Deep Learning

Neural Networks are a class of parameterised functions. A simple feed-forward neural network
is a series of linear transformations interspersed with non-linear functions. The introduction of
the non-linearity in the function computation allows neural networks, in principle, to represent
any arbitrary function [Cybenkot, 1989]. These parameterised functions can then be trained
using a multitude of optimisation algorithms to learn the function appropriate for the task at
hand. Deep Learning is the all encompassing term for training neural networks of arbitrary
structure (in terms of connectivity) and size (in terms of number of parameters) to perform
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well at a specified task. The flexibility offered by this approach allows for deep learning to
be used as the tool of choice for a variety of Machine Learning tasks. We restrict ourselves
to the sub-domain of Deep Generative Models.

In the case of simple feed-forward networks, model can be written as follows,

h0 = x

hl = σ(W lhl−1 + bl), l ∈ {1, . . . , L}
ŷ = hL

The linear transformations W l and bl are the trainable parameters and σ is the non-linear
function, also called the activation function. L is the number of hidden layers in the network.
The neural network is trained using Stochastic Gradient Descent (SGD) by computing the
gradients with respect to a loss function. The choice of loss function used on the output of
the neural network reflects the properties of the function that are desired.

3.3 Generative Adversarial Networks (GANs)

A Generative Adversarial Network is an approach to learning a generative model for complex
high dimensional densities[Goodfellow et al., 2014]. In this framework, we initialise a neural
network G, called the generator, that takes as input a latent vector z sampled from a specified
prior i.e. z ∼ p(z), and produces a sample from the data distribution. Simultaneously,
we initialise a neural network D that takes as input a sample from the data distribution
and classifies if it is from the true data generating distribution or not. The generator and
discriminator are trained adversarially by alternatively optimising either the generator or the
discriminator. The training objective that is optimised is,

min
G

max
D

V (D,G) = Ex∼pdata(x) [log(D(x))] + Ez∼pz(z) [log(1−D(G(z))] (3.1)

As the training progresses, the generator gradually becomes better at generating samples that
are similar to the true data generating distribution.

Of specific interest to us are Generative Moment Matching Networks [Li et al., 2015]. Here
the authors solve the same task as a GAN, which is to train a generative model of a complex
data distribution. But they achieve this without having to train a separate discriminator
network. They remove the need for a discriminator by instead using the Maximum Mean
Discrepancy test statistic as a loss function. In doing so, the generator network is trained to
produce samples, so as to minimise the MMD. Note that when the MMD is computed with
a generated sample and the true dataset sample, it evaluates to zero.

Maximum Mean Discrepancy

Given two samples X ∼ p and Y ∼ q, the Maximum Mean Discrepancy test statistic can be
used to ascertain if p = q [Gretton et al., 2008].

MMD2[F , p, q] = Ex,x′
[
k
(
x, x′

)]
− 2Ex,y[k(x, y)] + Ey,y′

[
k
(
y, y′

)]
(3.2)
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Here, k is the Gaussian kernel. The unbiased estimator for MMD is given by,

MMD2
u[F , X, Y ] =

1

m(m− 1)

m∑
i=1

m∑
j 6=i

k(xi, xj) +
−1

n(n− 1)

n∑
i=1

n∑
j 6=i

k(yi, yj)

− 2

mn

m∑
i=1

n∑
j=1

k(xi, yj)

(3.3)

The MMD statistic is equal to zero, if and only if, p = q. All the terms involved in the
computation of the MMD are differentiable and can therefore be used as a loss function. A
generative network network that produces samples from the data distribution can be trained
by using zero as the target value, as is the case with most other loss functions.
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Chapter 4

MMDNet

In our problem setting we have a dataset of observed variables X ∈ Rn×d, where n is the
number of samples and d is the number of observed variables. We get the structure of the
minMCM, G corresponding to the dataset, using the algorithm refer in section 2. This con-
stitutes the structure learning component of identifying the FCM. Let l be the number of
latent variables in G. We now set up the generative model, from here on in referred to as
MMDNet, to learn the functional relations given the minMCM model G and the data sam-
ple X. Every observed variable is a non-linear stochastic function of a subset of the latent
variables. This function is represented as a neural network that takes input of the form
xi = fi(pa(xi), εi), fi : Rki+1 → R, where ki = |pa(xi)| is the number of the number of
latent variables that cause xi and the one additional variable is the exogenous noise term. It
can be shown that using this setup, there exists a set of neural network that can arbitrarily
closely approximate the true distribution [Goudet et al., 2017]. An example UDG and its
corresponding minMCM model is shown in 4.1. By construction, the parents of the observed
variables are exclusively latent variables that are naturally unobserved. We choose a distribu-
tion over the latent variables such that all of the latent variables are mutually independent,
i.e. p(z) =

∏l
i=0 p(zi). The default choice is a uniform distribution zi ∼ U(−1, 1). The choice

of latent variable distribution is further discussed in 5. Further, we sample the exogenous
noise terms from a standard normal distribution. The FCM model now can be written as

Zi = εi, εi ∼ U(−1, 1), i ∈ {1, · · · , l} (4.1)

Xi = fi(pa(Xi), εi), εi ∼ N (0, 1), i ∈ {1, · · · , d} (4.2)

A sample is drawn from the assumed latent distribution and the corresponding subsets are
fed into each of the neural networks to generate a sample from X̂ ∼ p̂(X). We want to reduce
the difference between the generated sample X̂ and true sample X. We do this by computing
the Maximum Mean Discrepancy (MMD) as a loss function.

4.1 Dataset Generation

We generate artificial datasets by sampling from a chosen minMCM with a specified mecha-
nism to observed variables. In the experiments conducted, two types of mechanism are used,
a polynomial mechanism and a neural network mechanism.
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X1

X2

X3

(a) Undirected Dependency Graph

X1 X2 X3

L1 L2

(b) Corresponding Minimal Latent Model

Figure 4.1: The Minimal Latent Model is recovered from the Undirected Dependency Graph

Polynomial Mechanism

The polynomial mechanism uses polynomial terms of specific degree, of the parents of an
observed variables including the exogenous noise term in the MCM, e.g. that of 4.1. In
this example, a polynomial mechanism of degree 2 for the variable x2 would be computed as
x2 = a+ b ε22 + c l21 + d l22 + e ε2l1 + f l1l2 + g ε2l2, where {a, · · · , g} are random coefficients. In
the general case, the equation is as follows,

xi =
∑

p1+p2+···+pk+1=d

αm

k+1∏
t=1

aptt , at ∈ {pa(xi), εi}

Here, αm are random coefficients sampled from U(−1, 1), d is the degree of the polynomial,
and at is the set of the parents of xi and its corresponding exogenous noise term. Sampling
from this model is done by keeping the randomly chosen coefficients constant and then feeding
the values of the latent variables and the exogenous noise term, both randomly sampled from
the uniform distribution U(−1, 1).

Neural Network Mechanism

Similar to the polynomial mechanism, A neural network identical to the one used in MMDNet
is randomly initialised. Keeping the weights of the network constant, the neural network is
fed with values of latent and exogenous noise terms sampled from the uniform distribution
U(−1, 1).

4.2 Experiments

For testing of the approach, data from 4 different minMCMs was generated. The configuration
and hyperparameters for testing the models were kept the same for all models. The training
was implemented using PyTorch [Paszke et al., 2019] and PyTorch Lightning [Falcon, 2019]
libraries. The dataset size used for each of the models tested was n = 1000. The effects
used for the observed variables were modelled with two hidden layer networks with 15 hidden
units each. The non-linear function used was the tanh function. Another hyperparameter.
The networks were trained using the Adam optimiser [Kingma and Ba, 2015] with a default
learning rate of lr = 1e−3. The models were each trained for nepochs = 2000.

The models are evaluated by generating neval = 100 dataset samples, each of them the
same size as the true dataset n = 1000 from the trained model and averaging the MMD
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(a) Fitted generator

(b) Distance Correlation values

Figure 4.2: Pairplot for example UDG and corresponding Distance Correlation values

value for each of the samples. Figure 4.2 is a pairwise scatter plot of the observed variables.
This plot is useful to visually ascertain the dependence between some the observed variables.
In Figure 4.3, the pairwise scatter plot for the true dataset and the data sampled from the
trained network are shown. The plots along the diagonal in these figures are kernel density
estimates for the marginal of each observed variable. This is useful for a preliminary visual
verification that the marginals are identical as well as the pairwise (in)depedence of each
variable. This is better visualised in Figure 4.4. This plot is generated by interpolating along
the first latent variable z1 in [−1, 1] and setting the remaining latent variables zero. The
exogenous noise terms are also set to zero.
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(a) True Sample (b) Generated Sample

Figure 4.3: Pairwise plot of all observed variables, in the true sample and the generated
sample.

(a) True Sample (b) Generated Sample

Figure 4.4: Interpolating along the first latent variable keeping the second latent variable
constant



Chapter 5

Conclusion

The MMDNet is capable of learning any FCM to arbitrary degree of precision, however
this leaves out of the picture the learnability, in the sense of converging to a satisfactory
solution and the scalability of the method. The computation of the MMD Loss is a potential
bottleneck because it takes quadratic time in sample size to compute. There exists a linear
time approximation to computation of this loss function that was not tested as the experiments
performed were only in the low dimensional data space and were of a relatively small sample
size. The choice of distribution for latent variables and the exogenous variables also affects
learnability of the network. The MMDNet model does not necessitate the use of any specific
latent distribution, only that it is possible to sample (efficiently) from this distribution. Once
again, the choice of distribution over latent variables was kept constant across experiments,
namely the uniform distribution. This was chosen for convenience and not a restriction of
the model. It is interesting to note here what occurs when a latent model that allows all
latent variables to cause all the observed variables was trained on a dataset that included
independencies among observed variables. In other words, when a causal model that violates
faithfulness is forcibly chosen. This strucutre implies that the none of the observed variables
were (unconditionally) independent. In this case, the MMDNet learned functional relations
that were (empirically) unfaithful, i.e. the model learned to generate data that had the same
pairwise unconditional independencies despite sharing a latent cause.

The learning of the MCM is agnostic to how the MCM was identified, with regard to
non-linear independence tests and the notion of minimality, and vice versa. This makes the
approach easy to apply in a range of situations.

While the experiments performed are exclusively on minMCM structures, learning the
MMDNet is possible for any MeDIL model that is observationally consistent. Moreover, the
minMCM retrieved from the approach also need not be unique. One could utilise domain
expertise with regard to the nature of the data being analysed to justify selecting any one of
the many options. Further, simultaneously analysing multiple MCMs could potentially lead
to interesting conclusions.
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Appendix A

Test Models and Plots

Graphs and plots for the datasets tested on are presented here. The figures contain the
undirected dependency graph for the dataset and its corresponding minMCM. An example
pairwise scatter plot of the variables from the true dataset and a sample genererated from the
fitted MMDNet along with Distance Correlation values are plotted for each of the datasets
used.
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X7

X8

(a) Undirected Dependency Graph

X1 X2 X3 X4 X5 X6 X7 X8
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(b) Corresponding Minimal Latent Model

(c) Distance Correlation values

(d) True Sample (e) Generated Sample

Figure A.1: minimal MCM 1



19

X1

X2

X3 X4

(a) Undirected Dependency Graph
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(b) Corresponding Minimal Latent Model
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Figure A.2: minimal MCM 2



20 A. Test Models and Plots

X1

X2

X3

X4

X5

X6

X7

(a) Undirected Dependency Graph
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